MCDONALD OBSERVATORY
THE UNIVERITY OF TEXAS AT AUSTIN

Tracker Coordinates: A Proposal Trajectories in ITF, Corrections in SIRP frame

Version 0.2, 7/8/10

Ideal Tracker Frame (ITF) - origin on telescope optical axis, distance Fs from COC

1) \mathbf{X}, \mathbf{Y}, and \mathbf{Z} axes are orthogonal
2) Positive direction for the \mathbf{X}, \mathbf{Y}, and \mathbf{Z} axes is as shown by the arrows

McDONALD OBSERVATORY
3) \mathbf{W} axis passes through the M1 COC and SIRP, and is positive towards the M1 COC
4) Beta $(\boldsymbol{\beta})$ is the angle between the \mathbf{W} axis and the \mathbf{Z} axis
5) Theta $(\boldsymbol{\theta})$ is the angle between the \mathbf{Z} axis and the projection of the \mathbf{W} axis onto the $\mathbf{Y Z}$ plane
6) $\boldsymbol{\theta}$ rotates about an axis that is parallel to the X axis
7) Phi $(\boldsymbol{\varphi})$ is the angle between the \mathbf{Z} axis and the projection of the \mathbf{W} axis onto the $\mathbf{X Z}$ plane
8) φ rotates about an axis that is parallel to the Y axis
9) Rho ($\boldsymbol{\rho}$) is rotation about the \mathbf{W} axis
10) Positive direction for $\boldsymbol{\theta}, \boldsymbol{\varphi}$, and ρ is based upon the right-hand rule

SIRP Frame

 (dx, dy, dw, dr, tip, tilt)

SIRP Frame - origin at SIRP

1) \mathbf{x}, \mathbf{y}, and \mathbf{w} axes are orthogonal
2) \mathbf{w} axis is coincident with the WFC's optical axis
3) Positive direction for the \mathbf{x}, \mathbf{y}, and \mathbf{w} axes is as shown by the arrows
4) tip is rotation about the x axis
5) tilt is rotation about the y axis
6) r is rotation about the w axis (not the same as ρ in ITF)
7) Positive direction for tip, tilt, and \mathbf{r} is based upon the right-hand rule
8) When $\boldsymbol{\beta}=0, \boldsymbol{\rho}=0$, and $\mathbf{d r}=0$ the \mathbf{x} and \mathbf{X} axes are parallel to one another
9) When $\boldsymbol{\beta}=0, \boldsymbol{\rho}=0$, and $\mathbf{d r}=0$ the \mathbf{y} and \mathbf{Y} axes are parallel to one another

SIRP Frame Rotation Matrices

Assume signs on the angles from the right hand rule:

- $R x=$

$[1$	0	0
0	$\cos ($ tip $)$	$-\sin ($ tip $)$
0	$\sin ($ tip $)$	$\cos ($ tip $)]$

Are these signs correct for right hand rule?

- $R y=\quad[\cos ($ tilt $) \quad 0 \quad \sin ($ tilt $)$

0	1	0
$-\sin ($ tilt $)$	0	$\cos ($ tilt $)]$

They don't match Hanshin's current code, but we should fix that to use a standard convention.

- Rz= [cos(dr) -sin(dr) 0

> I'm confused about order: Is this ITF -> SIRP or vice versa?

> Or does it matter?

Finally, the order of application is $R x, R y, R z$:
first rotate about the x axis through the angle "tip" then rotate about the new y axis through the angle "tilt" then rotate about the final z axis through the angle "dr" finally apply required translation

SALT Mount Model

 the university of texas at austin
SALT Pointing Model Flow Chart:

SALT Reference Frames

SALT System Frame (SSF):

- Purpose: The position and attitude of all the SALT subsystems are defined relative to this frame.
- Origin: At center of pier, $x-y$ plane coincident with top of 100% flat pier
- X-axis: Points north
- Y-axis: Completes right handed system (east)
- Z-axis: Points to center of earth

SALT Reference Frames (cont.)

Structure Base Frame (SBF):

- Purpose: Used to define the position and attitude of the telescope structure.
- The actual positions and displacements of the structure feet are given relative to this frame.
- Origin: Centered above the telescope pintle bearing, on level of pier
- X-axis: Points east when structure azimuth position is zero
- Y-axis: Points north when structure azimuth position is zero
- Z-axis: Up along axis of rotation

SALT Reference Frames (cont.)

Kinematic Mount Frame (KMF):

- Purpose: Positions of kinematic mounts must be relative to this frame. (All in $x-y$ plane if the structure is perfect).
- Origin: Intersection of the optical axis and the plane of kinematic mounts, if the structure is perfect
- X-axis: Parallel to SBF x-axis, but in the opposite direction
- Y-axis: Points 37 degrees up from the horizontal, if structure is perfect
- Z-axis: Up along optical axis, if structure is perfect

SALT Reference Frames (cont.)

Primary Mirror Apex Frame (PMAF):

- Purpose: Used to define the position and attitude of primary mirror subsystems.
- Origin: At the vertex of the primary mirror
- X-axis: $x-y$ plane tangential to vertex, x-axis completing the right handed system
- Y-axis: y-z plane coincident with telescope meridian when azimuth angle is zero, y pointing upwards
- Z-axis: Up from the vertex

SALT Reference Frames (cont.)

Center of Curvature Frame (COCF):

- Purpose: Used to define the position and attitude of the CCAS instrument and act as intermediary frame to calculate the tracker motions in ITF.
- Origin: At the center of curvature of the primary mirror
- X-axis: Parallel to ITF x-axis
- Y-axis: Parallel to ITF y-axis
- Z-axis: Perpendicular to the PMAF x-y plane pointing down towards the PM vertex

SALT Reference Frames (cont.)

Bottom Hexagon Frame (BHF):

- Purpose: Displacement of bottom hexagon relative to the structure base. This frame is used to model base wedge deformations.
- Origin: Center of bottom hexagon
- X-axis: Right handed complement
- Y-axis: Up (37 degrees) through the origin, if the structure is perfect
- Z-axis: Up along optical axis, if structure is perfect

SALT Reference Frames (cont.)

Top Hexagon Frame (THF):

- Purpose: Used as an intermediary frame to calculate ITF. This frame is fixed to the top hex beams on which the tracker runs.
- Origin: At the intersection of the optical axis and the plane formed by the top hex beams. (The $x-y$ plane coincides with the idealized beam plane.)
- X-axis: Right handed complement
- Y-axis: Up (37 degrees) through origin, if structure is perfect
- Z-axis: Up along optical axis, if structure is perfect

SALT Reference Frames (cont.)

Ideal Tracker Frame (ITF):

- Purpose: All the tracker motions are defined relative to this frame.

Any deviations from the ideal tracker beam should be compensated for by making adjustments to these commands.

- Origin: At the vertex of the PM, x-y plane coincident with ideal x-bearings
- X-axis: In x-drive direction
- Y-axis: Positive in y-drive direction (uphill)
- Z-axis: Pointing to the PM vertex Note that HET uses opposite sign.

SALT Reference Frames (cont.)

Hexapod Frame (HTF):

- Purpose: Used as intermediary frame to calculate Hexapod strut lengths, this frame is fixed to the payload and its attitude relative to the ITF frame is given by ϕ about x_{0}, θ about y_{1}, ρ about z_{2}, in order of rotation from ITF to HPF.
- Origin: At rotation point of Payload
- X-axis: Parallel to ITF x-axis
- Y-axis: Parallel to ITF y-axis
- Z-axis: Parallel to ITF z-axis

SALT Reference Frames (cont.)

Payload Mechanical Frame (PMF):

- Purpose: To define position and attitude of payload subsystems.
- Origin: At center of payload structure in the plane of mounting on the rotation stage with the $x-y$ plane parallel to the ITF $x-y$ plane at PM vertex
- X-axis: Coincident with ITF x-axis in zero position
- Y-axis: Coincident with ITF y-axis in zero position
- Z-axis: Pointing down along SAC optical axis

Note that HET uses opposite sign.

SALT Reference Frames (cont.)

Focal Plane Frame (Prime Focus) (FPF):

- Purpose: To define image positions at prime focus.
- Origin: At the center of prime focus.

The $x-y$ plane coincides with the image plane.

- X-axis: X pointing north when azimuth and payload tip and tilt angles are zero
- Y-axis: y-z plane coincident with telescope meridian when azimuth and payload tip and tilt angles are zero, Y completes the right handed system
- Z-axis: Down along SAC optical axis Note that HET uses opposite sign.

General Notes

Now coordinates and corrections will be in different coordinate systems:

- Trajectories, plus relative and absolute moves, are described in ITF
- ITF is the natural system for computing a trajectory
- Corrections are described AND applied relative to the SIRP
- Our metrology produces measurements naturally in this frame
- Tip/Tilt must be applied as rotations about SIRP to avoid scan on sky
- Both ITF and SIRP coordinate systems are defined by the optics
- ITF relative to the optical axis of primary mirror, at radius Fs from COC
- SIRP is a point along the optical axis of the Wide Field Corrector
- => Transformations are required to relate to physical hardware
- ITF coords relative to the upper hex or points on upper, lower X rails
- SIRP coords relative to the strongback, or elsewhere on hexapod frame
- For ITF, $X=Y=0$ on $P M$ optical axis, $Z=0$ at radius Fs from COC
- For SIRP, coordinates are 0 when WFC is pointing at COC
- Goal of metrology system is to drive these to zero

Meaning of θ, φ in ITF

- For "can-on-a-string", these are defined in HET Tech. Report \#42
- p. 7, equations (16) and (17)
- Can also be used to specify an arbitrary orientation for the WFC
- θ, φ are used to define two direction cosines used to orient hexapod
- See the C code from current control system in Calc_Hex_Pos.c
- See Jim Fowler's documentation for that code in FullWriteUp.pdf
- "Hexpods at the Hobby Eberly Telescope"
- This arbitrary orientation amounts to pointing the WFC at a new COC
- This formulation reduces to the figure on Slide 2 for "can-on-a-string"
- θ is negative for negative Y values
- φ is negative for negative X values
- See the example trajectory plot and table (for the current tracker)
- ITF: trajectory+60.pdf, trajectory+60.dat
- Hexapod leg lengths: hexapod+60.pdf, hexapod+60.dat
- Possible red herring:
- φ is defined via a left hand rule inside the current tracker

HET Technical Report \#42

Definition of Theta and Phi

F B Ray, McD. Obs., TR-940104 Date: 6/27/94

about the center of curvature of the primary mirror. Prime focus spectrometer apertures also require correction for field rotation as a rotation point is tracked across the available gantry space, and the optical corrector near prime focus benefits from 2 -axis tip/tilt freedom about an optical node for coma correction and fine guiding (the "coma-neutral" node). We therefore must project the space curve marked "RP trajectory" in figure 4 to a Cartesian coordinate system related to the gantry mechanism and the tilt mechanisms it carries.

Relating the above spherical tracking triangles to a Cartesian coordinate system fixed to the telescope's upper surface, we require several auxiliary variables. First, we define 2D rectangular coordinates (\mathbf{r}, \mathbf{d}) for a system whose \mathbf{R} axis is perpendicular to the transit plane, as

$$
\begin{gather*}
\mathbf{r}(\mathrm{t})=\mathbf{F}_{\mathrm{S}} \cos \delta(\mathrm{t}) \sin \mathbf{h}_{\mathbf{c}}(\mathrm{t}) \tag{10}\\
\mathbf{d}(\mathrm{t})=\mathbf{F}_{\mathrm{S}}\left[\sin \left(\delta_{\mathbf{T}}-\delta_{\mathbf{c}}\right)+\sin \delta_{\mathbf{c}}\left(\cos \delta_{\mathbf{T}}-\cos \delta(\mathrm{t}) \cos \mathbf{h}_{\mathbf{c}}(\mathrm{t})\right)\right] \tag{11}
\end{gather*}
$$

which is of the form

$$
\begin{equation*}
\mathbf{d}(\mathrm{t})=\mathbf{F}_{\mathrm{S}}\left[\mathrm{C} 5-\mathrm{C} 2 \cos \delta(\mathrm{t}) \cos \mathbf{h}_{\mathbf{c}}(\mathrm{t})\right] \tag{12}
\end{equation*}
$$

if

$$
\begin{equation*}
\mathrm{C} 1=\sin \left(\delta_{\mathbf{T}}-\delta_{\mathbf{c}}\right), \mathrm{C} 2=\sin \delta_{\mathbf{c}}, \mathrm{C} 3=\cos \delta_{\mathbf{T}}, \mathrm{C} 4=\mathrm{C} 2 \mathrm{C} 3, \text { and } \mathrm{C} 5=\mathrm{C} 1+\mathrm{C} 4 \tag{13}
\end{equation*}
$$

and \mathbf{F}_{S} is the radius of the tracking sphere.
Then, with a parallactic rotation $\mathbf{p}_{\mathbf{c}}$ about the telecentric axis, we obtain \mathbf{x} and \mathbf{y}, coordinates in a hypothetical mechanism's X and Y (mechanical) directions,

$$
\begin{align*}
& \mathbf{x}(\mathrm{t})=\mathbf{r}(\mathrm{t}) \cos \mathbf{p}_{\mathbf{c}}-\mathbf{d}(\mathrm{t}) \sin \mathbf{p}_{\mathbf{c}} \tag{14}\\
& \mathbf{y}(\mathrm{t})=\mathbf{r}(\mathrm{t}) \sin \mathbf{p}_{\mathbf{c}}+\mathbf{d}(\mathrm{t}) \cos \mathbf{p}_{\mathbf{c}} \tag{15}
\end{align*}
$$

Projection angles $\theta(t)$ and $\phi(t)$ related to the tracker's Cartesian coordinate system are then

$$
\begin{align*}
& \theta(\mathrm{t})=\tan ^{-1}\left[\frac{y(\mathrm{t})}{\mathbf{F}_{S} \cos \beta(\mathrm{t})}\right] \tag{16}\\
& \phi(\mathrm{t})=\tan ^{-1}\left[\frac{\mathbf{x}(\mathrm{t})}{\mathbf{F}_{S} \cos \beta(\mathrm{t})}\right] \tag{17}
\end{align*}
$$

The displacement parallel to the telecentric axis we define as $\mathbf{z}(\mathrm{t})$ (also called the tracking sagitta), given by

$$
\begin{equation*}
\mathbf{z}(\mathrm{t})=\mathbf{F}_{\mathrm{S}}[1-\cos \beta(\mathrm{t})]=\mathbf{F}_{\mathrm{S}}-\sqrt{\mathbf{F}_{S}{ }^{2}-\mathbf{x}(\mathrm{t})^{2}-\mathbf{y}(\mathrm{t})^{2}} \tag{18}
\end{equation*}
$$

Needs tweaking:

Trajectory Correction Strategy

Correction Scheme

- The correction scheme that we have discussed previously needs tweaking:
- We now intend to send corrections in the SIRP frame
- These corrections are no longer simple offsets to ITF coordinates
- Corrections in the SIRP frame will need to be transformed to offsets that can be added to the internal coordinates the tracker is using to follow a trajectory
- And we can't forget:
- We need to be able to transform the current tracker position back to ITF
- Describing its actual position and orientation
- Using a forward transformation scheme as described in Jim's writeup
- Note that forward transform works fine, to high accuracy, for current tracker
- And no, I can't write down all of the required transformations

Tracker API

MOVR_TCS [X, Y, Z, ρ, θ, φ] [speed = SLEW|TRACK|vel]

Initiates a relative (incremental) move in ideal tracker frame coordinates at either slew speed, track speed, or else at the velocity specified.

MOVA_TCS [X, Y, Z, ρ, θ, φ] [speed = SLEW|TRACK|veI]

Initiates an absolute move in ideal tracker frame coordinates at either slew speed, track speed, or else at the velocity specified.

MOVR_TRK [X,Y, $\mathrm{p}, \mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}, \mathrm{H}_{4}, \mathrm{H}_{5}, \mathrm{H}_{6}$] [SLEW|TRACK|vel]

Initiates a relative (incremental) move in tracker coordinates at either slew speed, track speed, or else at the velocity specified.

MOVA_TRK [X,Y,p, $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}, \mathrm{H}_{4}, \mathrm{H}_{5}, \mathrm{H}_{6}$] [SLEW|TRACK|vel]

Initiates an absolute move in tracker coordinates at either slew speed, track speed, or else at the velocity specified.

SLEW and TRACK boil down to fast and slow;
'vel' allows us to specify a speed if moving one axis

