

Tracker Coordinates: A Proposal Trajectories in ITF, Corrections in SIRP frame

Version 0.2, 7/8/10

MEC

SIRP Frame Rotation Matrices

Assume signs on the angles from the right hand rule:

•	Rx=	[1 0 0 0 cos(tip) -sin(tip) 0 sin(tip) cos(tip)]	Are these signs correct for right hand rule?
•	Ry=	[cos(tilt)0sin(tilt)010-sin(tilt)0cos(tilt)	They don't match Hanshin's current code, but we should fix that to use a standard convention.
•	Rz=		0I'm confused about order:0Is this ITF -> SIRP or vice versa?1Or does it matter?

Finally, the order of application is Rx, Ry, Rz:

first rotate about the x axis through the angle "tip" then rotate about the new y axis through the angle "tilt" then rotate about the final z axis through the angle "dr" finally apply required translation

SALT Mount Model

SALT Pointing Model Flow Chart:

SALT Reference Frames

SALT System Frame (SSF):

- Purpose: The position and attitude of all the SALT subsystems are defined relative to this frame.
- Origin: At center of pier, x-y plane coincident with top of 100% flat pier
- X-axis: Points north
- Y-axis: Completes right handed system (east)
- Z-axis: Points to center of earth

Structure Base Frame (SBF):

- Purpose: Used to define the position and attitude of the telescope structure.
 - The actual positions and displacements of the structure feet are given relative to this frame.
- Origin: Centered above the telescope pintle bearing, on level of pier
- X-axis: Points east when structure azimuth position is zero
- Y-axis: Points north when structure azimuth position is zero
- Z-axis: Up along axis of rotation

Kinematic Mount Frame (KMF):

- Purpose: Positions of kinematic mounts must be relative to this frame.
 (All in x-y plane if the structure is perfect).
- Origin: Intersection of the optical axis and the plane of kinematic mounts, if the structure is perfect
- X-axis: Parallel to SBF x-axis, but in the opposite direction
- Y-axis: Points 37 degrees up from the horizontal, if structure is perfect
- Z-axis: Up along optical axis, if structure is perfect

Primary Mirror Apex Frame (PMAF):

- Purpose: Used to define the position and attitude of primary mirror subsystems.
- Origin: At the vertex of the primary mirror
- X-axis: x-y plane tangential to vertex, x-axis completing the right handed system
- Y-axis: y-z plane coincident with telescope meridian when azimuth angle is zero, y pointing upwards
- Z-axis: Up from the vertex

Center of Curvature Frame (COCF):

- Purpose: Used to define the position and attitude of the CCAS instrument and act as intermediary frame to calculate the tracker motions in ITF.
- Origin: At the center of curvature of the primary mirror
- X-axis: Parallel to ITF x-axis
- Y-axis: Parallel to ITF y-axis
- Z-axis: Perpendicular to the PMAF x-y plane pointing down towards the PM vertex

Bottom Hexagon Frame (BHF):

- Purpose: Displacement of bottom hexagon relative to the structure base.
 This frame is used to model base wedge deformations.
- Origin: Center of bottom hexagon
- X-axis: Right handed complement
- Y-axis: Up (37 degrees) through the origin, if the structure is perfect
- Z-axis: Up along optical axis, if structure is perfect

Top Hexagon Frame (THF):

- Purpose: Used as an intermediary frame to calculate ITF. This frame is fixed to the top hex beams on which the tracker runs.
- Origin: At the intersection of the optical axis and the plane formed by the top hex beams. (The x-y plane coincides with the idealized beam plane.)
- X-axis: Right handed complement
- Y-axis: Up (37 degrees) through origin, if structure is perfect
- Z-axis: Up along optical axis, if structure is perfect

Ideal Tracker Frame (ITF):

- Purpose: All the tracker motions are defined relative to this frame.
 Any deviations from the ideal tracker beam should be compensated for by making adjustments to these commands.
- Origin: At the vertex of the PM, x-y plane coincident with ideal x-bearings
- X-axis: In x-drive direction
- Y-axis: Positive in y-drive direction (uphill)
- Z-axis: Pointing to the PM vertex Note that HET uses opposite sign.

Hexapod Frame (HTF):

- Purpose: Used as intermediary frame to calculate Hexapod strut lengths, this frame is fixed to the payload and its attitude relative to the ITF frame is given by ϕ about x_0 , θ about y_1 , ρ about z_2 in order of rotation from ITF to HPF.
- Origin: At rotation point of Payload
- X-axis: Parallel to ITF x-axis
- Y-axis: Parallel to ITF y-axis
- Z-axis: Parallel to ITF z-axis

Payload Mechanical Frame (PMF):

- Purpose: To define position and attitude of payload subsystems.
- Origin: At center of payload structure in the plane of mounting on the rotation stage with the x-y plane parallel to the ITF x-y plane at PM vertex
- X-axis: Coincident with ITF x-axis in zero position
- Y-axis: Coincident with ITF y-axis in zero position
- Z-axis: Pointing down along SAC optical axis Note that HET uses opposite sign.

Focal Plane Frame (Prime Focus) (FPF):

- Purpose: To define image positions at prime focus.
- Origin: At the center of prime focus.
 The x-y plane coincides with the image plane.
- X-axis: X pointing north when azimuth and payload tip and tilt angles are zero
- Y-axis: y-z plane coincident with telescope meridian when azimuth and payload tip and tilt angles are zero, Y completes the right handed system
- Z-axis: Down along SAC optical axis Note that HET uses opposite sign.

General Notes

Now coordinates and corrections will be in different coordinate systems:

- Trajectories, plus relative and absolute moves, are described in ITF
 - ITF is the natural system for computing a trajectory
- Corrections are described AND applied relative to the SIRP
 - Our metrology produces measurements naturally in this frame
 - Tip/Tilt must be applied as rotations about SIRP to avoid scan on sky
- Both ITF and SIRP coordinate systems are defined by the optics
 - ITF relative to the optical axis of primary mirror, at radius Fs from COC
 - SIRP is a point along the optical axis of the Wide Field Corrector
- => Transformations are required to relate to physical hardware
 - ITF coords relative to the upper hex or points on upper, lower X rails
 - SIRP coords relative to the strongback, or elsewhere on hexapod frame
- For ITF, X=Y=0 on PM optical axis, Z=0 at radius Fs from COC
- For SIRP, coordinates are 0 when WFC is pointing at COC
 - Goal of metrology system is to drive these to zero

Meaning of $\theta,\,\phi$ in ITF

- For "can-on-a-string", these are defined in HET Tech. Report #42
 - p. 7, equations (16) and (17)
- Can also be used to specify an arbitrary orientation for the WFC
 - θ , ϕ are used to define two direction cosines used to orient hexapod
 - See the C code from current control system in Calc_Hex_Pos.c
 - See Jim Fowler's documentation for that code in FullWriteUp.pdf
 - "Hexpods at the Hobby Eberly Telescope"
 - This arbitrary orientation amounts to pointing the WFC at a new COC
 - This formulation reduces to the figure on Slide 2 for "can-on-a-string"
- θ is negative for negative Y values
- ϕ is negative for negative X values
 - See the example trajectory plot and table (for the current tracker)
 - ITF: trajectory+60.pdf, trajectory+60.dat
 - Hexapod leg lengths: hexapod+60.pdf, hexapod+60.dat
- Possible red herring:
 - ϕ is defined via a left hand rule inside the current tracker

HET Technical Report #42

Definition of Theta and Phi

F B Ray, McD. Obs., TR-940104 Date: 6/27/94

about the center of curvature of the primary mirror. Prime focus spectrometer apertures also require correction for field rotation as a rotation point is tracked across the available gantry space, and the optical corrector near prime focus benefits from 2-axis tip/tilt freedom about an optical node for coma correction and fine guiding (the "coma-neutral" node). We therefore must project the space curve marked "**RP** trajectory" in figure 4 to a Cartesian coordinate system related to the gantry mechanism and the tilt mechanisms it carries.

Relating the above spherical tracking triangles to a Cartesian coordinate system fixed to the telescope's upper surface, we require several auxiliary variables. First, we define 2D rectangular coordinates (\mathbf{r}, \mathbf{d}) for a system whose **R** axis is perpendicular to the transit plane, as

$$\mathbf{r}(t) = \mathbf{F}_{\mathbf{S}} \cos \delta(t) \sin \mathbf{h}_{\mathbf{c}}(t)$$
(10)

$$\mathbf{d}(t) = \mathbf{F}_{\mathbf{S}} \left[\sin \left(\delta_{\mathbf{T}} - \delta_{\mathbf{c}} \right) + \sin \delta_{\mathbf{c}} \left(\cos \delta_{\mathbf{T}} - \cos \delta(t) \cos \mathbf{h}_{\mathbf{c}}(t) \right) \right]$$
(11)

which is of the form

$$\mathbf{d}(t) = \mathbf{F}_{\mathbf{S}} \left[\mathbf{C5} - \mathbf{C2} \cos \delta(t) \cos \mathbf{h}_{\mathbf{c}}(t) \right]$$
(12)

if

 $C1 = \sin (\delta_T - \delta_c), C2 = \sin \delta_c, C3 = \cos \delta_T, C4 = C2 C3, and C5 = C1 + C4$ (13) and F_S is the radius of the tracking sphere.

Then, with a parallactic rotation $\mathbf{p}_{\mathbf{c}}$ about the telecentric axis, we obtain x and y, coordinates in a hypothetical mechanism's X and Y (mechanical) directions,

$$\mathbf{x}(t) = \mathbf{r}(t) \cos \mathbf{p_c} - \mathbf{d}(t) \sin \mathbf{p_c}$$
(14)

$$\mathbf{y}(t) = \mathbf{r}(t) \sin \mathbf{p_c} + \mathbf{d}(t) \cos \mathbf{p_c}$$
(15)

Projection angles $\theta(t)$ and $\phi(t)$ related to the tracker's Cartesian coordinate system are then

$$\theta(t) = \tan^{-1} \left[\frac{\mathbf{y}(t)}{\mathbf{F}_{S} \cos \beta(t)} \right]$$
(16)

$$\phi(t) = \tan^{-1} \left[\frac{\mathbf{x}(t)}{\mathbf{F}_{S} \cos \beta(t)} \right]$$
(17)

The displacement parallel to the telecentric axis we define as z(t) (also called the tracking sagitta), given by

$$\mathbf{z}(t) = \mathbf{F}_{S} \left[1 - \cos \beta(t)\right] = \mathbf{F}_{S} - \sqrt{\mathbf{F}_{S}^{2} - \mathbf{x}(t)^{2} - \mathbf{y}(t)^{2}}$$
(18)

Needs tweaking: Trajectory Correction Strategy

X_Cor	Y_Cor	Z_Cor	ection Reg R_Cor	T_Cor	P_Cor
N/A	N/A	N/A	N/A	N/A	N/A
0.000	0.000	0.000	0.000	0.000	0.000
					V
0.000	0.100	0.012	0.000	0.020	0.000
					V
0.023	0.100	0.004	0.500	0.040	0.110
÷	_	1	L.	4	4

Hobby-Eberly Telescope Dark Energy Experiment

Correction Scheme

- The correction scheme that we have discussed previously needs tweaking:
 - We now intend to send corrections in the SIRP frame
 - These corrections are no longer simple offsets to *ITF* coordinates
 - Corrections in the SIRP frame will need to be transformed to offsets that can be added to the internal coordinates the tracker is using to follow a trajectory
- And we can't forget:
 - We need to be able to transform the current tracker position back to ITF
 - Describing its actual position and orientation
 - Using a forward transformation scheme as described in Jim's writeup
 - Note that forward transform works fine, to high accuracy, for current tracker
- And no, I can't write down all of the required transformations

Tracker API

MOVR_TCS [X, Y, Z, ρ , θ , ϕ] [speed = SLEW|TRACK|vel]

Initiates a relative (incremental) move in ideal tracker frame coordinates at either slew speed, track speed, or else at the velocity specified.

MOVA_TCS [X, Y, Z, ρ , θ , ϕ] [speed = SLEW|TRACK|vel]

Initiates an absolute move in ideal tracker frame coordinates at either slew speed, track speed, or else at the velocity specified.

MOVR_TRK [X,Y,ρ,H₁,H₂,H₃,H₄,H₅,H₆] [SLEW|TRACK|vel]

Initiates a relative (incremental) move in tracker coordinates at either slew speed, track speed, or else at the velocity specified.

MOVA_TRK [X,Y,ρ,H₁,H₂,H₃,H₄,H₅,H₆] [SLEW|TRACK|vel]

Initiates an absolute move in tracker coordinates at either slew speed, track speed, or else at the velocity specified.

SLEW and TRACK boil down to fast and slow; 'vel' allows us to specify a speed if moving one axis