Astronomical Data Analysis Software and Systems XX

ASP Conference Series, Vol. 442

lan N. Evans, Alberto Accomazzi, Douglas J. Mink, and Arnold H. Rots, eds.
©2011 Astronomical Society of the Pacific

1.

New Control System Software for the Hobby-Eberly Telescope

Tom Rafferty,” Mark E. Cornell, Charles Taylor III, and Walter Moreira

McDonald Observatory, University of Texas at Austin, 1 University Station C1402,
Austin, TX, USA 78712-0259

*rafferty@astro.as.utexas.edu, thomasrafferty@gmail.com

Abstract. The Hobby-Eberly Telescope at the McDonald Observatory is undergo-
ing a major upgrade to support the Hobby-Eberly Telescope Dark Energy Experiment
(HETDEX) and to facilitate large field systematic emission-line surveys of the universe.
An integral part of this upgrade will be the development of a new software control sys-
tem. Designed using modern object oriented programming techniques and tools, the
new software system uses a component architecture that closely models the telescope
hardware and instruments, and provides a high degree of configuration, automation and
scalability. Here we cover the overall architecture of the new system, plus details some
of the key design patterns and technologies used. This includes the utilization of an em-
bedded Python scripting engine, the use of the factory method pattern and interfacing
for easy run-time configuration, a flexible communication scheme, the design and use
of a centralized logging system, and the distributed GUI architecture.

Overview

i

l
l

VDAS Control System

The new control system architecture consists of a closely coupled group of distributed systems.
Each system is responsible for specific functions based on type or proximity to hardware, and
is designed to be run autonomously. A simple but flexible messaging scheme allows communi-
cations between the systems.

285

286 Rafferty et al.

2. Control System Architecture

Main System
Main Thread: Interpreter, Setup, Cmd Line, CS Object EhasedlSGiip;
1. Main thread starts the server, reads command-line
args, creates the context object and interpreter
2. Control System object creation, managers are
created and setup with device via script
3. Pre-wiring: All managers instantiate their
devices and device objects get pre-wiring setu
This layer hoids the ‘The RPC (Remote 0.0 « J. - getp N . g P
Rpit o rtro- | ystom,he pragram fl Procecr Cal)ayor i o 4. Wiring: Managers “wire” all their devices
et e - All low-level devices establish communications
this layer: a listener and an 7 1
the outside. Moving Baffle AP':\:T-L = it The R with mput/ output hardware)
Examplos include whi subsystoms. | programs,butonly [recoes overisand - Meta-devices are configured to talk to their
/ commands, and the updater . .
) ot convoiers B From ahigh evel, 9 | sends out status inormation respective low-level devices
conmaicafore| || €00} X Hrkgtlodinehed Ll - Sub-Systems are configured with Meta-devices
device for CAN i hendio ol user- - Post-wiring configuration of devices
el machine, which il The underlying mechanism o
these devices. for this is CORBA, which 5. Actions layer enabled
ool it 6. CORBA/RPC layer enabled

language o communicats (n 7. Default program is loaded and starts to run
a dlient-server relationship.

Scripting Interface

All major control systems use the same basic architecture, highlighted above. Each control
system has a collection of managers, or object factories, whose job is to create and destroy all
device objects in the system. They are configured at run-time by the embedded scripting engine.
The API to the control system consists of a set of actions, which are controlled by a high-level,
state-machine based program called actions processing. This allows asynchronous control of
the underlying hardware.

3. Design Principles

Flexibility, along with reliability, were two of the primary drivers of the design. We are us-
ing modern, yet proven, programming techniques, utilizing a common tool chain and widely
available libraries.

*

Component oriented design
Object oriented programming techniques
Physical world is composed of components and modules that are

D ifferent Camera connected using defined interfaces
Common code throughout
Manufadurers - Provides base classes for all objects in system
Cam 1

Use of Interface Classes to Abstract Hardware

*

*

- Similar hardware drivers implement the same
Cam 2 generic interface class
- Shared algorithms, routines, utilities, etc
Scriptable interface built in at device level

*

Specmc Protocol | E==> Dew;e (Eth) D,L‘Z.:L(al}sdg)
Each individual control system:
Specific Driver = Apose) s ~ Controls low-level device drivers to provide /O to the hardware
Code Driver Driver - Provides abstraction interface to the devices so
changing hardware manufacturer is simple
M = | «

- Defines it's API using Actions with a marshaled
atch within ﬁ
SubSystem

.

interface to the action processing system
- Run programs that use actions to manipulate the device sub-systems
- State machine driven

4. Scripting

At the heart of the control system lies an embedded Python scripting interface. All devices, sub-
systems, and actions are available to scripting engine through the “magic” of SWIG wrappers.
The control system is configured entirely from within scripting layer which executes shortly
after startup. This allows the capability to completely change the configuration of your system
simply by using a different or modified configuration script. Testing/debugging is simplified
because you can easily isolate any driver or change its properties. Program code can start out as

New Control System Software for the Hobby-Eberly Telescope 287

a prototyping script to allow agile development without changing any of the core driver code or
algorithms. The use of Python as interpreter brings in a very rich and well tested set of modules
for extending the base functionality of the control system, with little or no modification to the
base code.

5. Communications and Messaging

In order to keep the communications and messaging between components and major systems
as flexible as possible, we use JSON documents. JSON (JavaScript Object Notation) is a
lightweight, data-interchange format that is easy for humans to read and write. By using JSON
as the payload in our communications, we can easily add or modify commands without having
to re-factor the interface.

6. GUI

The design of the GUI system allows multiple individual GUI screens to exist at any given time.
Each can be configured differently based on the role of the user. The data model for the GUI
resides in the control systems; therefore there is no disconnect between different GUIs that are
running simultaneously.

Data Flow

GuUI1
Telescope
Operator

GUI 2
Resident
Astronomer

* Data model in control systems, not GUIL.

. Each control system sees only one GUI (a
broker), simplifying their operation.

. Broker distributes data to multiple GUIs as it

Register is updated (no use for redundant model).

. GUIs send commands to control systems;
control systems respond to broker; and broker
distributes back to client GUIs.

* Each GUI has a common dashboard at top,

User
Commands

Control I Control but the remaining components can be
System 2 System m customized according to the role of the user.
e F—

User Interface

* Qt/PyQt with custom widget library.

* Mayavi using OpenGL to render images and 3D
visualizations in real time.

. Image visualizations allow standard set of operations in
a DS9-like fashion. User can send images to DS9 for
further processing, if necessary.

* User configurable set of modules (tabs) and visual
elements at a given time or for a given job role.

¢ Fully interactive stripcharts to display data. Smaller
versions (sparklines) displayed side by side with
important values to quickly show trends in a glance.

7. Logger

The logging system is intended to be an obervatory-wide system available 24/7 to a wide variety
of data-producing systems using a variety or protocols. Command-line as well as web-based
clients can be used to extract data from the system.

288 Rafferty et al.

S Clients:
Anyythin lh‘a\ Manual queries,
energtes Visual data
9 it inspectors,

Web clients

Queries

Logging/

Network Server:

24/7 availability allows high number of concurrent connections.

All major system connect to it via sockets, http, etc.

Uniform API for all the protocols.

Separation of network server and database engine processes through a fast
internal synchronized queue.

Uses JSON format for logging and querying, and for returning set of results.
Supports raw unformatted strings for clients with limited computing power.

* e 00

* 0

D. Backend

Other transports
@s plugins)

Client API

[Sockets| HTTP |CORBA|

Abstraction
Layer

Database Backend

Database

8. Development Environment

1. Uses schema-less design (NOSQL).

2. Database engine can be changed by writing a thin layer to adapt to a defined
interface.

3. Currently uses MongoDB allowing high insertion speed and easy distributed
replication.

4. Separation of logging and querying OS processes to minimize interference in
case of overloading. Each of them can run on separate machines if necessary.

Abstraction Layer:
1. Handles the logic between network and dB backend.
2. Does stemming analysis on text to allow fuzzy queries (plurals, conjugated

verbs, etc.).
3. Adds data about the client and timestamps if necessary.

The development team uses the usual list of open source tools and libraries as described in the

following table.

Primary Platform | RHEL 64-bit

Languages Used | C/C++, Python, tcl/tk

Toolchain | gcc, gnu make, bash, lapack, libtool, automake

Technologies | SWIG, omniORB, omniORBpy, SLALIB, pySlalib, CFITSIO, pyFits,
libedit, sqlite, cJSON, log4cplus, Qt4/pyQt, Mayavi/OpenGL, Chaco,
NumPy, SciPy, VTK, SetupDocs, Pyrex, Sphynx, Greenlet, GSL,
MongoDB, Stemming

Continuous Integration | Nightly builds using Hudson

Version control | git with a central ‘master’ repository

Other | Automatic building of auxiliary libs; use of bugzilla for bug tracking;
wiki used to capture specs, brainstorm amongst developers,
document processes

9. Further Information

To obtain the original ADASS XX (2010) poster in pdf form, please use the following URL:
http://www.philomather.com/ADASS_XX_P060.pdf. The author can be contacted via
email at rafferty@astro.as.utexas.edu or thomasrafferty@gmail.com.

