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Summary

This document contains two discussions. Section 1 discusses two corrections
for the computation of the parallactic angle and for the rotation of the field of
view. Section 2 discusses two possible transformations to orient the hexapod, and
a correction for the transformation currently performed at the HET. Note that we
prefer to orient the hexapod using “Frank Ray’s transformation” (Section 2.3).

1 Corrections for angles in the focal plane

1.1 Parallactic angle as seen on the focal plane

The parallactic angle is the angle p formed by the transit plane and the Y Z plane of the
ITF (see [Ray1], Figure 1). The transit plane contains the axis Z of the ITF, hence the
projection of the transit plane and the Y Z plane onto the Y X plane are two lines which
form an angle p. In other words, looking down the Z axis of the ITF we see exactly the
parallactic angle (see [Ray2], Figure 11).

Let us call the focal plane the plane perpendicular to the w axis of the SIRP. The
transit plane intersects the focal plane on a line a, which is the line containing the north
pole N that we see on the field of view. The Y Z plane intersects the focal plane on a
line b, which is the line one sees as the “up” direction on the focal plane.

Figure 1 tries to illustrate the general situation. The two vertical planes (purple)
represent the Y Z plane and the transit plane. The horizontal plane (cyan) represents
the XY plane. The slanted plane represents the focal plane. The intersection of the
horizontal and vertical planes (bold black lines) is the parallactic angle p, while the
intersection of the slanted and vertical planes (bold blue lines) is the angle p̃ one “sees”
on the focal plane.
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Figure 1: p̃ is the parallactic angle as seen on the focal plane.

The angle in blue is given by

p̃ = arccos

(
sin p sinφ sin θ cos θ + cos p cosφ√

sin p cos θ(cos p sin(2φ) sin θ + sin p cos θ) + cos2 p cos2 φ

)
.

When φ = θ = 0 (when the line of sight coincides with the Z axis of the ITF) the
previous equation reduces to p̃ = p.

However, for other values of φ and θ, the angle p̃ is slightly different than p. For
example, for φ ≈ θ ≈ 6.35◦ (so that β ≈ 8.8◦), we have

p̃ = arccos

(
0.0121627 sin p+ 0.993862 cos p√

0.987762 cos2 p+ 0.993862 sin p(0.993862 sin p+ 0.0243253 cos p)

)
.

Plotting the expression p − p̃ as a function of p we get the graph shown in Figure 2.
Both axes are in degrees.

1.2 Rotation of the sky as seen on the focal plane

In [Ray1], the rotation necessary to compensate the rotation of the sky is computed as
ρ = − arcsin

(
sin δ(t) sinhC(t)

)
, where δ is the declination and hC is the hour angle with
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Figure 2: Graph of p− p̃ as a function of p.

respect to the transit plane. This value is measuring the angle between a line in the
focal plane pointing north and its orthogonal projection on the transit plane.

In Figure 3 we have a picture of the celestial sphere. The blue circle is a line of
constant declination, the green arcs are the hour angle hC and the declination δ, the
bold black line is the line of sight, the rightmost red line is the direction of north in the
focal plane, and the leftmost red line is its projection onto the transit plane. The angle
ρ measures the angle between the two red lines.

However, the plane defined by the two red lines does not coincide with the focal
plane in general (unless ρ = 0, or when δ(t) = π/2), so the angle ρ seen on the focal
plane differs slightly.

In the focal plane we see the angle formed by the rightmost red line and the inter-
section of the focal plane and the transit plane. We can derive this angle as follows.

The line of sight is the vector

w = (cos δ coshC , cos δ sinhC , sin δ),

since we are looking at a point with polar coordinates (hC , δ). Consider the plane

determined by the line of sight w and the pole (the line with direction
−−→
ON). Its normal is

n = w × (0, 0, 1) = (cos δ sinhC ,− cos δ coshC , 0).

The north direction on the focal plane (the rightmost red line) is, then, the intersection
of the plane with normal n and the focal plane (with normal w). Hence, its intersection is

a = n× w = cos δ(− sin δ coshC ,− sin δ sinhC , cos δ).
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Figure 3: Angle ρ in the celestial sphere.

On the other hand, the intersection of the focal plane with the transit plane (which has
normal (0, 1, 0)) is

b = w × (0, 1, 0) = (− sin δ, 0, cos δ coshC).

The angle between the vectors a and b is the angle ρ we want to measure:

ρ(t) = arccos

(
a · b
‖a‖‖b‖

)
= arccos

(
coshC(t)√

cos2 δ(t) cos2 hC(t) + sin2 δ(t)

)
, (1)

and the sign of ρ(t) must coincide with the sign of −δ(t)hC(t). This formula is valid for
δ(t) and hC(t) in the range (−π/2, π/2).

We can verify the cases where this expression must coincide with Frank Ray’s ρ:

• when we are on the transit plane (hC = 0), then Equation (1) reduces to 0;

• when δ(t) = 0, for any hC(t), the focal plane is parallel to the pole line, and
Equation (1) correctly reduces to 0;

• when δ(t) = π/2, the focal plane is perpendicular to the pole line, and ρ(t) coin-
cides with hC(t), as it does Frank Ray’s ρ.

For the general case, the difference between Equation (1) and Frank Ray’s ρ as a
function of δ and hC is shown in Figure 4 (all axes are in degrees).
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Figure 4: Graph of ρ− ρRay as a function of δ and hC .

2 Hexapod transformations

2.1 Rotation of the field of view for Jim’s transformation

According to [Fow] the transformation used to orient the hexapod is

Rp1 = RZ

(
−(ρ+ ζ)

)
RY (β)RZ(ζ) (2)

where

RZ(α) =


cosα sinα 0 0
− sinα cosα 0 0

0 0 1 0
0 0 0 1

 , RY (α) =


cosα 0 − sinα 0

0 1 0 0
sinα 0 cosα 0

0 0 0 1


and

β = arctan
√

tan2 φ+ tan2 θ, ζ = atan2(tan θ, tanφ).

(we are ignoring the translations since we are only interested in angles, for this discus-
sion). The selection of β and ζ is made so that the the projections of w = Rp1Z onto
the XZ and Y Z form angles φ and θ with the Z axis, respectively, as required.
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We can check the previous statement by computing those angles. For example, the
angle between the Z axis and the projection of Rp1(0, 0, 1) onto Y Z is

arccos

(
cos β√

cos2 β + sin2 β sin2(ρ+ ζ)

)
(3)

When ρ = 0, as is assumed in [Fow], the previous expression reduces to θ.
Note that equation (3) does not coincide with θ when ρ 6= 0. The value of ρ in [Fow]

is interpreted as a possible extra rotation of the hexapod. To keep the right orientation
for the normal to the top of the hexapod this extra rotation by ρ should be added to
the the rightmost RZ transformation (see equation (5) in Subsection 2.2) instead of the
leftmost transformation as is done in equation (2).

To see the rotation introduced by the transformation Rp1 (with ρ = 0) on the field
of view, we want to compare the effect of the transformation on the Y axis (which
will become the y axis on the SIRP), with the “up” direction on the focal plane (the
intersection of the YZ plane and the focal plane).

Transforming the vector (0, 1, 0) by Rp1 and computing the angle with the line b
from the previous section gives:

ρc = arccos
(
sin(β) sin(θ) sin(ζ) + cos(θ)

(
cos(β) sin2(ζ) + cos2(ζ)

))
(4)

If we rotate the SIRP around w by −ρc, the y axis will be in the “up” direction,
parallel to the YZ plane, and forming an angle p̃ (from previous section) with the north
pole.

For example, when φ = θ = 6◦, we get ρc ≈ 0.31◦.

2.2 Correction to Jim’s transformation

Consider the transformation

T = T(X,Y,Z)RZ(−ζ)RY (β)RZ(ζ + ρc) (5)

where T(X,Y,Z) is a translation of vector (X, Y, Z), and ρc is defined as in (4).
This transformation maps the Z axis onto the w axis, so that it is tilted according to

φ and θ, and keeps the transformation of the Y axis parallel to the original Y Z plane.

2.3 Frank Ray’s transformation

In [Ray1], Section 5, Frank Ray proposes a transformation to tilt the hexapod that keeps
the transformation of the Y axis parallel to the Y Z plane of the ITF. It is important
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to note that Ray’s transformation in [Ray1] is written only for the “can on a string”
situation. This means that the angles θ and φ depend on X and Y , in such a way that
the w axis is always pointing to the center of curvature (which has ITF coordinates
(0, 0, FS)).

To write Ray’s transformation for the general situation, where the variables X, Y ,
Z, θ, and φ do not depend on each other, let

φ̃ = arccos

(
cosφ√

cos2 θ sin2 φ+ cos2 φ

)
.

The sign for φ̃ must match the sign of φ. Then, the transformation

T = T(X,Y,Z)RX(−θ)RY (φ̃), (6)

where

RX(α) =


1 0 0 0
0 cosα sinα 0
0 − sinα cosα 0
0 0 0 1

 , RY (α) =


cosα 0 − sinα 0

0 1 0 0
sinα 0 cosα 0

0 0 0 1


transform the Z axis into the w axis and keeps the transformed Y axis parallel to the
Y Z plane. This means that the transformations in (5) and (6) are exactly the same, as
they are orthogonal transformations which coincide on two linearly independent vectors
(Z axis and Y axis).

The particular case of “can on a string” occurs when X, Y, Z, θ, φ are related by the
equations

θ = arctan

(
Y

FS − Z

)
, φ = arctan

(
X

FS − Z

)
, Z = FS −

√
F 2
S −X2 − Y 2.

For these values, the rotations RX(−θ) and RY (φ̃) coincide with the rotations (20a)
and (21) in [Ray1]. The simplifications in equation (21a) in [Ray1] contain typos; the
correct matrices are:

RX(−θ) =


1 0 0 0
0 FS−Z

RVY Z

−Y
RVY Z

0

0 Y
RVY Z

FS−Z
RVY Z

0

0 0 0 1

 , RY (φ̃) =


RVY Z
FS

0 −X
FS

0

0 1 0 0
X
FS

0 RVY Z
FS

0

0 0 0 1

 ,

where RVY Z =
√
F 2
S −X2.
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2.4 Change of basis between the ITF and the SIRP frames

The SIRP frame is an orthogonal coordinate frame with axes named x, y, and w,
satisfying:

• its origin is located at the Stationary Image Rotation Point (SIRP);

• the w axis is perpendicular to the top of the hexapod;

• the y axis is parallel to the Y Z plane of the ITF.

If the hexapod is tilted using the transformation T discussed in sections 2.2 and 2.3,
then the SIRP frame can be seen as bolted to the top of the hexapod.

An instrument fixed to the top of the hexapod can be allowed to rotate around
the w axis of the SIRP frame using the ρ stage. Let us call SIRPψ the coordinate
frame attached to such an instrument, where ψ is the angle that measures the rotation
of the SIRPψ frame with respect to the SIRP frame. With this notation, we have
SIRP = SIRP0.

2.4.1 SIRPψ to ITF

The SIRPψ frame is determined from the ITF by 6 values (see [MEC]):

• (X, Y, Z): the origin of the SIRPψ is translated by this vector from the origin of
the ITF;

• θ: let wY Z be the projection of the axis w of the SIRPψ onto the plane Y Z of the
ITF, then θ is the angle between wY Z and the Z axis of the ITF;

• φ: let wXZ be the projection of the axis w of the SIRPψ onto the plane XZ of the
ITF, then φ is the angle between wXZ and the Z axis of the ITF;

• ψ: let b be the intersection of the Y Z plane of the ITF with the plane perpendicular
to w, then ψ is the angle between the y axis of the SIRPψ and the line b. The
angle ψ is positive in the counter-clockwise direction when looked down from +∞
on the w axis of the SIRPψ.

Then, the matrix of change of basis from the SIRPψ to the ITF is ITFMSIRPψ :

coordsITF(v) = ITFMSIRPψ · coordsSIRPψ(v)
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for any point v, and

ITFMSIRPψ = T(X,Y,Z)RX(−θ)RY

(
arccos

(
cosφ√

cos2 θ sin2 φ+ cos2 φ

))
RZ(ψ),

where

RZ(ψ) =


cosψ − sinψ 0 0
sinψ cosψ 0 0

0 0 1 0
0 0 0 1

 .

In the usual case, to compensate for the rotation of the sky, we would set ψ = ρ̃, but it
is important to note that the change of coordinates is valid for an arbitrary value of ψ.

2.4.2 dSIRP to SIRPψ

Let dSIRP be a coordinate frame slightly moved with respect to the SIRPψ. A correction
changes the dSIRP frame back to the SIRPψ. The dSIRP frame is determined from the
SIRPψ by 6 values:

• (dx, dy, dw): the origin of the dSIRP frame is translated by this vector from the
origin of the SIRPψ;

• tip: the dSIRP frame is first rotated by an angle tip, counter-clockwise, around
the x axis of the SIRPψ;

• tilt: the dSIRP frame is then rotated by an angle tilt, counter-clockwise, around
the y axis of the SIRPψ;

• dr: the dSIRP frame is finally rotated by an angle dr, counter-clockwise, around
the w axis of the SIRPψ.

The matrix of change of basis between dSIRP and SIRPψ is SIRPψMdSIRP. This means
that

coordsSIRPψ(v) = SIRPψMdSIRP · coordsdSIRP(v)
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for any point v. Let

Rx(tip) =


1 0 0 0
0 cos(tip) − sin(tip) 0
0 sin(tip) cos(tip) 0
0 0 0 1

 , Ry(tilt) =


cos(tilt) 0 sin(tilt) 0

0 1 0 0
− sin(tilt) 0 cos(tilt) 0

0 0 0 1

 ,

Rz(dr) =


cos(dr) − sin(dr) 0 0
sin(dr) cos(dr) 0 0

0 0 1 0
0 0 0 1

 , T =


1 0 0 dx
0 1 0 dy
0 0 1 dw
0 0 0 1

 .

Then, SIRPψMdSIRP = TRz,drRy,tiltRx,tip. The explicit expression is

SIRPψMdSIRP =
cos(dr) cos(tilt) cos(dr) sin(tilt) sin(tip)− cos(tip) sin(dr)
cos(tilt) sin(dr) cos(dr) cos(tip) + sin(dr) sin(tilt) sin(tip)
− sin(tilt) cos(tilt) sin(tip)

0 0

cos(dr) cos(tip) sin(tilt) + sin(dr) sin(tip) dx
cos(tip) sin(dr) sin(tilt)− cos(dr) sin(tip) dy

cos(tilt) cos(tip) dw
0 1

 .
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