astropy:docs

Source code for astropy.modeling.parameters

# Licensed under a 3-clause BSD style license - see LICENSE.rst

"""
This module defines two classes that deal with parameters.

It is unlikely users will need to work with these classes directly, unless they
define their own models.
"""

from __future__ import (absolute_import, unicode_literals, division,
                        print_function)

import inspect
import functools
import numbers

import numpy as np

from ..utils import isiterable
from ..utils.compat import ignored
from ..extern import six

__all__ = ['Parameter', 'InputParameterError']


[docs]class InputParameterError(ValueError): """Used for incorrect input parameter values and definitions."""
def _tofloat(value): """Convert a parameter to float or float array""" if isiterable(value): try: value = np.array(value, dtype=np.float) except (TypeError, ValueError): # catch arrays with strings or user errors like different # types of parameters in a parameter set raise InputParameterError( "Parameter of {0} could not be converted to " "float".format(type(value))) elif isinstance(value, np.ndarray): # A scalar/dimensionless array value = float(value.item()) elif isinstance(value, (numbers.Number, np.number)): value = float(value) elif isinstance(value, bool): raise InputParameterError( "Expected parameter to be of numerical type, not boolean") else: raise InputParameterError( "Don't know how to convert parameter of {0} to " "float".format(type(value))) return value
[docs]class Parameter(object): """ Wraps individual parameters. This class represents a model's parameter (in a somewhat broad sense). It acts as both a descriptor that can be assigned to a class attribute to describe the parameters accepted by an individual model (this is called an "unbound parameter"), or it can act as a proxy for the parameter values on an individual model instance (called a "bound parameter"). Parameter instances never store the actual value of the parameter directly. Rather, each instance of a model stores its own parameters as either hidden attributes or (in the case of `~astropy.modeling.FittableModel`) in an array. A *bound* Parameter simply wraps the value in a Parameter proxy which provides some additional information about the parameter such as its constraints. *Unbound* Parameters are not associated with any specific model instance, and are merely used by model classes to determine the names of their parameters and other information about each parameter such as their default values and default constraints. Parameters ---------- name : str parameter name description : str parameter description default : float or array default value to use for this parameter getter : callable a function that wraps the raw (internal) value of the parameter when returning the value through the parameter proxy (eg. a parameter may be stored internally as radians but returned to the user as degrees) setter : callable a function that wraps any values assigned to this parameter; should be the inverse of getter fixed : bool if True the parameter is not varied during fitting tied : callable or False if callable is supplied it provides a way to link the value of this parameter to another parameter (or some other arbitrary function) min : float the lower bound of a parameter max : float the upper bound of a parameter bounds : tuple specify min and max as a single tuple--bounds may not be specified simultaneously with min or max model : object an instance of a Model class; this should only be used internally for creating bound Parameters """ constraints = ('fixed', 'tied', 'bounds') """ Types of constraints a parameter can have. Excludes 'min' and 'max' which are just aliases for the first and second elements of the 'bounds' constraint (which is represented as a 2-tuple). """ # See the _nextid classmethod _nextid = 1 def __init__(self, name='', description='', default=None, getter=None, setter=None, fixed=False, tied=False, min=None, max=None, bounds=None, model=None): super(Parameter, self).__init__() if model is not None and not name: raise TypeError('Bound parameters must have a name specified.') self._name = name self.__doc__ = self._description = description.strip() self._default = default # NOTE: These are *default* constraints--on model instances constraints # are taken from the model if set, otherwise the defaults set here are # used if bounds is not None: if min is not None or max is not None: raise ValueError( 'bounds may not be specified simultaneously with min or ' 'or max when instantiating Parameter {0}'.format(name)) else: bounds = (min, max) self._fixed = fixed self._tied = tied self._bounds = bounds self._order = None self._shape = None self._model = model # The getter/setter functions take one or two arguments: The first # argument is always the value itself (either the value returned or the # value being set). The second argument is optional, but if present # will contain a reference to the model object tied to a parameter (if # it exists) if getter is not None: self._getter = self._create_value_wrapper(getter, model) else: self._getter = None if setter is not None: self._setter = self._create_value_wrapper(setter, model) else: self._setter = None if model is not None: with ignored(AttributeError): # This can only work if the parameter's value has been set by # the model _, self._shape = self._validate_value(model, self.value) else: # Only Parameters declared as class-level descriptors require # and ordering ID self._order = self._get_nextid() def __get__(self, obj, objtype): if obj is None: return self return self.__class__(self._name, default=self._default, getter=self._getter, setter=self._setter, fixed=self._fixed, tied=self._tied, bounds=self._bounds, model=obj) def __set__(self, obj, value): value, shape = self._validate_value(obj, value) if self._setter is not None: setter = self._create_value_wrapper(self._setter, obj) value = setter(value) self._set_model_value(obj, value) def __len__(self): if self._model is None: raise TypeError('Parameter definitions do not have a length.') return len(self._model) def __getitem__(self, key): value = self.value if len(self._model) == 1: # Wrap the value in a list so that getitem can work for sensible # indices like [0] and [-1] value = [value] return value[key] def __setitem__(self, key, value): # Get the existing value and check whether it even makes sense to # apply this index oldvalue = self.value n_models = len(self._model) #if n_models == 1: # # Convert the single-dimension value to a list to allow some slices # # that would be compatible with a length-1 array like [:] and [0:] # oldvalue = [oldvalue] if isinstance(key, slice): if len(oldvalue[key]) == 0: raise InputParameterError( "Slice assignment outside the parameter dimensions for " "'{0}'".format(self.name)) for idx, val in zip(range(*key.indices(len(self))), value): self.__setitem__(idx, val) else: try: oldvalue[key] = value except IndexError: raise InputParameterError( "Input dimension {0} invalid for {1!r} parameter with " "dimension {2}".format(key, self.name, n_models)) def __repr__(self): args = "'{0}'".format(self._name) if self._model is None: if self._default is not None: args += ', default={0}'.format(self._default) else: args += ', value={0}'.format(self.value) for cons in self.constraints: val = getattr(self, cons) if val not in (None, False, (None, None)): # Maybe non-obvious, but False is the default for the fixed and # tied constraints args += ', {0}={1}'.format(cons, val) return "{0}({1})".format(self.__class__.__name__, args) @property def name(self): """Parameter name""" return self._name @property def default(self): """Parameter default value""" if (self._model is None or self._default is None or len(self._model) == 1): return self._default # Otherwise the model we are providing for has more than one parameter # sets, so ensure that the default is repeated the correct number of # times along the model_set_axis if necessary n_models = len(self._model) model_set_axis = self._model._model_set_axis default = self._default new_shape = (np.shape(default) + (1,) * (model_set_axis + 1 - np.ndim(default))) default = np.reshape(default, new_shape) # Now roll the new axis into its correct position if necessary default = np.rollaxis(default, -1, model_set_axis) # Finally repeat the last newly-added axis to match n_models default = np.repeat(default, n_models, axis=-1) # NOTE: Regardless of what order the last two steps are performed in, # the resulting array will *look* the same, but only if the repeat is # performed last will it result in a *contiguous* array return default @property def value(self): """The unadorned value proxied by this parameter""" if self._model is None: raise AttributeError('Parameter definition does not have a value') value = self._get_model_value(self._model) if self._getter is None: return value else: return self._getter(value) @value.setter def value(self, value): if self._model is None: raise AttributeError('Cannot set a value on a parameter ' 'definition') if self._setter is not None: val = self._setter(value) self._set_model_value(self._model, value) @property def shape(self): """The shape of this parameter's value array.""" return self._shape @property def size(self): """The size of this parameter's value array.""" return np.size(self.value) @property def fixed(self): """ Boolean indicating if the parameter is kept fixed during fitting. """ if self._model is not None: fixed = self._model._constraints['fixed'] return fixed.get(self._name, self._fixed) else: return self._fixed @fixed.setter def fixed(self, value): """Fix a parameter""" if self._model is not None: if not isinstance(value, bool): raise TypeError("Fixed can be True or False") self._model._constraints['fixed'][self._name] = value else: raise AttributeError("can't set attribute 'fixed' on Parameter " "definition") @property def tied(self): """ Indicates that this parameter is linked to another one. A callable which provides the relationship of the two parameters. """ if self._model is not None: tied = self._model._constraints['tied'] return tied.get(self._name, self._tied) else: return self._tied @tied.setter def tied(self, value): """Tie a parameter""" if self._model is not None: if not six.callable(value) and value not in (False, None): raise TypeError("Tied must be a callable") self._model._constraints['tied'][self._name] = value else: raise AttributeError("can't set attribute 'tied' on Parameter " "definition") @property def bounds(self): """The minimum and maximum values of a parameter as a tuple""" if self._model is not None: bounds = self._model._constraints['bounds'] return bounds.get(self._name, self._bounds) else: return self._bounds @bounds.setter def bounds(self, value): """Set the minimum and maximum values of a parameter from a tuple""" if self._model is not None: _min, _max = value if _min is not None: if not isinstance(_min, numbers.Number): raise TypeError("Min value must be a number") _min = float(_min) if _max is not None: if not isinstance(_max, numbers.Number): raise TypeError("Max value must be a number") _max = float(_max) bounds = self._model._constraints.setdefault('bounds', {}) self._model._constraints['bounds'][self._name] = (_min, _max) else: raise AttributeError("can't set attribute 'bounds' on Parameter " "definition") @property def min(self): """A value used as a lower bound when fitting a parameter""" return self.bounds[0] @min.setter def min(self, value): """Set a minimum value of a parameter""" if self._model is not None: self.bounds = (value, self.max) else: raise AttributeError("can't set attribute 'min' on Parameter " "definition") @property def max(self): """A value used as an upper bound when fitting a parameter""" return self.bounds[1] @max.setter def max(self, value): """Set a maximum value of a parameter.""" if self._model is not None: self.bounds = (self.min, value) else: raise AttributeError("can't set attribute 'max' on Parameter " "definition")
[docs] def copy(self, name=None, description=None, default=None, getter=None, setter=None, fixed=False, tied=False, min=None, max=None, bounds=None): """ Make a copy of this `Parameter`, overriding any of its core attributes in the process (or an exact copy). The arguments to this method are the same as those for the `Parameter` initializer. This simply returns a new `Parameter` instance with any or all of the attributes overridden, and so returns the equivalent of: .. code:: python Parameter(self.name, self.description, ...) """ kwargs = locals().copy() del kwargs['self'] for key, value in six.iteritems(kwargs): if value is None: # Annoying special cases for min/max where are just aliases for # the components of bounds if key in ('min', 'max'): continue else: if hasattr(self, key): value = getattr(self, key) elif hasattr(self, '_' + key): value = getattr(self, '_' + key) kwargs[key] = value return self.__class__(**kwargs)
@property def _raw_value(self): """ Currently for internal use only. Like Parameter.value but does not pass the result through Parameter.getter. By design this should only be used from bound parameters. This will probably be removed are retweaked at some point in the process of rethinking how parameter values are stored/updated. """ return self._get_model_value(self._model) @classmethod def _get_nextid(cls): """Returns a monotonically increasing ID used to order Parameter descriptors declared at the class-level of Model subclasses. This allows the desired parameter order to be determined without having to list it manually in the param_names class attribute. """ nextid = cls._nextid cls._nextid += 1 return nextid def _get_model_value(self, model): """ This method implements how to retrieve the value of this parameter from the model instance. See also `Parameter._set_model_value`. These methods take an explicit model argument rather than using self._model so that they can be used from unbound `Parameter` instances. """ if not hasattr(model, '_parameters'): # The _parameters array hasn't been initialized yet; just translate # this to an AttributeError raise AttributeError(self._name) # Use the _param_metrics to extract the parameter value from the # _parameters array param_slice = model._param_metrics[self._name]['slice'] param_shape = model._param_metrics[self._name]['shape'] value = model._parameters[param_slice] if param_shape: value = value.reshape(param_shape) else: value = value[0] return value def _set_model_value(self, model, value): """ This method implements how to store the value of a parameter on the model instance. Currently there is only one storage mechanism (via the ._parameters array) but other mechanisms may be desireable, in which case really the model class itself should dictate this and *not* `Parameter` itself. """ # TODO: Maybe handle exception on invalid input shape param_slice = model._param_metrics[self._name]['slice'] param_shape = model._param_metrics[self._name]['shape'] param_size = np.prod(param_shape) if np.size(value) != param_size: raise InputParameterError( "Input value for parameter {0!r} does not have {1} elements " "as the current value does".format(self._name, param_size)) model._parameters[param_slice] = np.array(value).ravel() def _validate_value(self, model, value): if model is None: return n_models = len(model) value = _tofloat(value) if n_models == 1: # Just validate the value with _tofloat return value, np.shape(value) else: shape = np.shape(value) model_axis = model._model_set_axis if model_axis < 0: model_axis = len(shape) + model_axis shape = shape[:model_axis] + shape[model_axis + 1:] return value, shape def _create_value_wrapper(self, wrapper, model): """Wrappers a getter/setter function to support optionally passing in a reference to the model object as the second argument. If a model is tied to this parameter and its getter/setter supports a second argument then this creates a partial function using the model instance as the second argument. """ if isinstance(wrapper, np.ufunc): if wrapper.nin != 1: raise TypeError("A numpy.ufunc used for Parameter " "getter/setter may only take one input " "argument") else: wrapper_args = inspect.getargspec(wrapper) nargs = len(wrapper_args.args) if nargs == 1: pass elif nargs == 2: if model is not None: # Don't make a partial function unless we're tied to a # specific model instance model_arg = wrapper_args.args[1] wrapper = functools.partial(wrapper, **{model_arg: model}) else: raise TypeError("Parameter getter/setter must be a function " "of either one or two arguments") return wrapper def __array__(self, dtype=None): # Make np.asarray(self) work a little more straightforwardly if self._model is None: return np.array([], dtype=np.float) else: return np.asarray(self.value, dtype=dtype) def __nonzero__(self): if self._model is None: return True else: return bool(self.value) __bool__ = __nonzero__ def __add__(self, val): return self.value + val def __radd__(self, val): return val + self.value def __sub__(self, val): return self.value - val def __rsub__(self, val): return val - self.value def __mul__(self, val): return self.value * val def __rmul__(self, val): return val * self.value def __pow__(self, val): return self.value ** val def __rpow__(self, val): return val ** self.value def __div__(self, val): return self.value / val def __rdiv__(self, val): return val / self.value def __truediv__(self, val): return self.value / val def __rtruediv__(self, val): return val / self.value def __eq__(self, val): return (np.asarray(self) == np.asarray(val)).all() def __ne__(self, val): return not (np.asarray(self) == np.asarray(val)).all() def __lt__(self, val): return (np.asarray(self) < np.asarray(val)).all() def __gt__(self, val): return (np.asarray(self) > np.asarray(val)).all() def __le__(self, val): return (np.asarray(self) <= np.asarray(val)).all() def __ge__(self, val): return (np.asarray(self) >= np.asarray(val)).all() def __neg__(self): return -self.value def __abs__(self): return np.abs(self.value)

Page Contents