astropy:docs

Source code for astropy.stats.funcs

# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
This module contains simple statistical algorithms that are straightforwardly
implemented as a single python function (or family of functions).

This module should generally not be used directly.  Everything in `__all__` is
imported into `astropy.stats`, and hence that package should be used for
access.
"""

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import numpy as np

from ..extern.six.moves import xrange


__all__ = ['binom_conf_interval', 'binned_binom_proportion',
           'median_absolute_deviation', 'biweight_location',
           'biweight_midvariance', 'signal_to_noise_oir_ccd', 'bootstrap',
           'mad_std', 'gaussian_fwhm_to_sigma', 'gaussian_sigma_to_fwhm']

__doctest_skip__ = ['binned_binom_proportion']
__doctest_requires__ = {'binom_conf_interval': ['scipy.special']}


gaussian_sigma_to_fwhm = 2.0 * np.sqrt(2.0 * np.log(2.0))
"""
Factor with which to multiply Gaussian 1-sigma standard deviation(s) to
convert them to full width at half maximum(s).
"""

gaussian_fwhm_to_sigma = 1. / gaussian_sigma_to_fwhm
"""
Factor with which to multiply Gaussian full width at half maximum(s) to
convert them to 1-sigma standard deviation(s).
"""


# TODO Note scipy dependency
[docs]def binom_conf_interval(k, n, conf=0.68269, interval='wilson'): r"""Binomial proportion confidence interval given k successes, n trials. Parameters ---------- k : int or numpy.ndarray Number of successes (0 <= ``k`` <= ``n``). n : int or numpy.ndarray Number of trials (``n`` > 0). If both ``k`` and ``n`` are arrays, they must have the same shape. conf : float in [0, 1], optional Desired probability content of interval. Default is 0.68269, corresponding to 1 sigma in a 1-dimensional Gaussian distribution. interval : {'wilson', 'jeffreys', 'flat', 'wald'}, optional Formula used for confidence interval. See notes for details. The ``'wilson'`` and ``'jeffreys'`` intervals generally give similar results, while 'flat' is somewhat different, especially for small values of ``n``. ``'wilson'`` should be somewhat faster than ``'flat'`` or ``'jeffreys'``. The 'wald' interval is generally not recommended. It is provided for comparison purposes. Default is ``'wilson'``. Returns ------- conf_interval : numpy.ndarray ``conf_interval[0]`` and ``conf_interval[1]`` correspond to the lower and upper limits, respectively, for each element in ``k``, ``n``. Notes ----- In situations where a probability of success is not known, it can be estimated from a number of trials (N) and number of observed successes (k). For example, this is done in Monte Carlo experiments designed to estimate a detection efficiency. It is simple to take the sample proportion of successes (k/N) as a reasonable best estimate of the true probability :math:`\epsilon`. However, deriving an accurate confidence interval on :math:`\epsilon` is non-trivial. There are several formulas for this interval (see [1]_). Four intervals are implemented here: **1. The Wilson Interval.** This interval, attributed to Wilson [2]_, is given by .. math:: CI_{\rm Wilson} = \frac{k + \kappa^2/2}{N + \kappa^2} \pm \frac{\kappa n^{1/2}}{n + \kappa^2} ((\hat{\epsilon}(1 - \hat{\epsilon}) + \kappa^2/(4n))^{1/2} where :math:`\hat{\epsilon} = k / N` and :math:`\kappa` is the number of standard deviations corresponding to the desired confidence interval for a *normal* distribution (for example, 1.0 for a confidence interval of 68.269%). For a confidence interval of 100(1 - :math:`\alpha`)%, .. math:: \kappa = \Phi^{-1}(1-\alpha/2) = \sqrt{2}{\rm erf}^{-1}(1-\alpha). **2. The Jeffreys Interval.** This interval is derived by applying Bayes' theorem to the binomial distribution with the noninformative Jeffreys prior [3]_, [4]_. The noninformative Jeffreys prior is the Beta distribution, Beta(1/2, 1/2), which has the density function .. math:: f(\epsilon) = \pi^{-1} \epsilon^{-1/2}(1-\epsilon)^{-1/2}. The justification for this prior is that it is invariant under reparameterizations of the binomial proportion. The posterior density function is also a Beta distribution: Beta(k + 1/2, N - k + 1/2). The interval is then chosen so that it is *equal-tailed*: Each tail (outside the interval) contains :math:`\alpha`/2 of the posterior probability, and the interval itself contains 1 - :math:`\alpha`. This interval must be calculated numerically. Additionally, when k = 0 the lower limit is set to 0 and when k = N the upper limit is set to 1, so that in these cases, there is only one tail containing :math:`\alpha`/2 and the interval itself contains 1 - :math:`\alpha`/2 rather than the nominal 1 - :math:`\alpha`. **3. A Flat prior.** This is similar to the Jeffreys interval, but uses a flat (uniform) prior on the binomial proportion over the range 0 to 1 rather than the reparametrization-invariant Jeffreys prior. The posterior density function is a Beta distribution: Beta(k + 1, N - k + 1). The same comments about the nature of the interval (equal-tailed, etc.) also apply to this option. **4. The Wald Interval.** This interval is given by .. math:: CI_{\rm Wald} = \hat{\epsilon} \pm \kappa \sqrt{\frac{\hat{\epsilon}(1-\hat{\epsilon})}{N}} The Wald interval gives acceptable results in some limiting cases. Particularly, when N is very large, and the true proportion :math:`\epsilon` is not "too close" to 0 or 1. However, as the later is not verifiable when trying to estimate :math:`\epsilon`, this is not very helpful. Its use is not recommended, but it is provided here for comparison purposes due to its prevalence in everyday practical statistics. References ---------- .. [1] Brown, Lawrence D.; Cai, T. Tony; DasGupta, Anirban (2001). "Interval Estimation for a Binomial Proportion". Statistical Science 16 (2): 101-133. doi:10.1214/ss/1009213286 .. [2] Wilson, E. B. (1927). "Probable inference, the law of succession, and statistical inference". Journal of the American Statistical Association 22: 209-212. .. [3] Jeffreys, Harold (1946). "An Invariant Form for the Prior Probability in Estimation Problems". Proc. R. Soc. Lond.. A 24 186 (1007): 453-461. doi:10.1098/rspa.1946.0056 .. [4] Jeffreys, Harold (1998). Theory of Probability. Oxford University Press, 3rd edition. ISBN 978-0198503682 Examples -------- Integer inputs return an array with shape (2,): >>> binom_conf_interval(4, 5, interval='wilson') array([ 0.57921724, 0.92078259]) Arrays of arbitrary dimension are supported. The Wilson and Jeffreys intervals give similar results, even for small k, N: >>> binom_conf_interval([0, 1, 2, 5], 5, interval='wilson') array([[ 0. , 0.07921741, 0.21597328, 0.83333304], [ 0.16666696, 0.42078276, 0.61736012, 1. ]]) >>> binom_conf_interval([0, 1, 2, 5], 5, interval='jeffreys') array([[ 0. , 0.0842525 , 0.21789949, 0.82788246], [ 0.17211754, 0.42218001, 0.61753691, 1. ]]) >>> binom_conf_interval([0, 1, 2, 5], 5, interval='flat') array([[ 0. , 0.12139799, 0.24309021, 0.73577037], [ 0.26422963, 0.45401727, 0.61535699, 1. ]]) In contrast, the Wald interval gives poor results for small k, N. For k = 0 or k = N, the interval always has zero length. >>> binom_conf_interval([0, 1, 2, 5], 5, interval='wald') array([[ 0. , 0.02111437, 0.18091075, 1. ], [ 0. , 0.37888563, 0.61908925, 1. ]]) For confidence intervals approaching 1, the Wald interval for 0 < k < N can give intervals that extend outside [0, 1]: >>> binom_conf_interval([0, 1, 2, 5], 5, interval='wald', conf=0.99) array([[ 0. , -0.26077835, -0.16433593, 1. ], [ 0. , 0.66077835, 0.96433593, 1. ]]) """ if conf < 0. or conf > 1.: raise ValueError('conf must be between 0. and 1.') alpha = 1. - conf k = np.asarray(k).astype(np.int) n = np.asarray(n).astype(np.int) if (n <= 0).any(): raise ValueError('n must be positive') if (k < 0).any() or (k > n).any(): raise ValueError('k must be in {0, 1, .., n}') if interval == 'wilson' or interval == 'wald': from scipy.special import erfinv kappa = np.sqrt(2.) * min(erfinv(conf), 1.e10) # Avoid overflows. k = k.astype(np.float) n = n.astype(np.float) p = k / n if interval == 'wilson': midpoint = (k + kappa ** 2 / 2.) / (n + kappa ** 2) halflength = (kappa * np.sqrt(n)) / (n + kappa ** 2) * \ np.sqrt(p * (1 - p) + kappa ** 2 / (4 * n)) conf_interval = np.array([midpoint - halflength, midpoint + halflength]) # Correct intervals out of range due to floating point errors. conf_interval[conf_interval < 0.] = 0. conf_interval[conf_interval > 1.] = 1. else: midpoint = p halflength = kappa * np.sqrt(p * (1. - p) / n) conf_interval = np.array([midpoint - halflength, midpoint + halflength]) elif interval == 'jeffreys' or interval == 'flat': from scipy.special import betaincinv if interval == 'jeffreys': lowerbound = betaincinv(k + 0.5, n - k + 0.5, 0.5 * alpha) upperbound = betaincinv(k + 0.5, n - k + 0.5, 1. - 0.5 * alpha) else: lowerbound = betaincinv(k + 1, n - k + 1, 0.5 * alpha) upperbound = betaincinv(k + 1, n - k + 1, 1. - 0.5 * alpha) # Set lower or upper bound to k/n when k/n = 0 or 1 # We have to treat the special case of k/n being scalars, # which is an ugly kludge if lowerbound.ndim == 0: if k == 0: lowerbound = 0. elif k == n: upperbound = 1. else: lowerbound[k == 0] = 0 upperbound[k == n] = 1 conf_interval = np.array([lowerbound, upperbound]) else: raise ValueError('Unrecognized interval: {0:s}'.format(interval)) return conf_interval # TODO Note scipy dependency (needed in binom_conf_interval)
[docs]def binned_binom_proportion(x, success, bins=10, range=None, conf=0.68269, interval='wilson'): """Binomial proportion and confidence interval in bins of a continuous variable ``x``. Given a set of datapoint pairs where the ``x`` values are continuously distributed and the ``success`` values are binomial ("success / failure" or "true / false"), place the pairs into bins according to ``x`` value and calculate the binomial proportion (fraction of successes) and confidence interval in each bin. Parameters ---------- x : list_like Values. success : list_like (bool) Success (`True`) or failure (`False`) corresponding to each value in ``x``. Must be same length as ``x``. bins : int or sequence of scalars, optional If bins is an int, it defines the number of equal-width bins in the given range (10, by default). If bins is a sequence, it defines the bin edges, including the rightmost edge, allowing for non-uniform bin widths (in this case, 'range' is ignored). range : (float, float), optional The lower and upper range of the bins. If `None` (default), the range is set to ``(x.min(), x.max())``. Values outside the range are ignored. conf : float in [0, 1], optional Desired probability content in the confidence interval ``(p - perr[0], p + perr[1])`` in each bin. Default is 0.68269. interval : {'wilson', 'jeffreys', 'flat', 'wald'}, optional Formula used to calculate confidence interval on the binomial proportion in each bin. See `binom_conf_interval` for definition of the intervals. The 'wilson', 'jeffreys', and 'flat' intervals generally give similar results. 'wilson' should be somewhat faster, while 'jeffreys' and 'flat' are marginally superior, but differ in the assumed prior. The 'wald' interval is generally not recommended. It is provided for comparison purposes. Default is 'wilson'. Returns ------- bin_ctr : numpy.ndarray Central value of bins. Bins without any entries are not returned. bin_halfwidth : numpy.ndarray Half-width of each bin such that ``bin_ctr - bin_halfwidth`` and ``bin_ctr + bins_halfwidth`` give the left and right side of each bin, respectively. p : numpy.ndarray Efficiency in each bin. perr : numpy.ndarray 2-d array of shape (2, len(p)) representing the upper and lower uncertainty on p in each bin. See Also -------- binom_conf_interval : Function used to estimate confidence interval in each bin. Examples -------- Suppose we wish to estimate the efficiency of a survey in detecting astronomical sources as a function of magnitude (i.e., the probability of detecting a source given its magnitude). In a realistic case, we might prepare a large number of sources with randomly selected magnitudes, inject them into simulated images, and then record which were detected at the end of the reduction pipeline. As a toy example, we generate 100 data points with randomly selected magnitudes between 20 and 30 and "observe" them with a known detection function (here, the error function, with 50% detection probability at magnitude 25): >>> from scipy.special import erf >>> from scipy.stats.distributions import binom >>> def true_efficiency(x): ... return 0.5 - 0.5 * erf((x - 25.) / 2.) >>> mag = 20. + 10. * np.random.rand(100) >>> detected = binom.rvs(1, true_efficiency(mag)) >>> bins, binshw, p, perr = binned_binom_proportion(mag, detected, bins=20) >>> plt.errorbar(bins, p, xerr=binshw, yerr=perr, ls='none', marker='o', ... label='estimate') .. plot:: import numpy as np from scipy.special import erf from scipy.stats.distributions import binom import matplotlib.pyplot as plt from astropy.stats import binned_binom_proportion def true_efficiency(x): return 0.5 - 0.5 * erf((x - 25.) / 2.) np.random.seed(400) mag = 20. + 10. * np.random.rand(100) np.random.seed(600) detected = binom.rvs(1, true_efficiency(mag)) bins, binshw, p, perr = binned_binom_proportion(mag, detected, bins=20) plt.errorbar(bins, p, xerr=binshw, yerr=perr, ls='none', marker='o', label='estimate') X = np.linspace(20., 30., 1000) plt.plot(X, true_efficiency(X), ls='-', color='r', label='true efficiency') plt.ylim(0., 1.) plt.title('Detection efficiency vs magnitude') plt.xlabel('Magnitude') plt.ylabel('Detection efficiency') plt.legend() plt.show() The above example uses the Wilson confidence interval to calculate the uncertainty ``perr`` in each bin (see the definition of various confidence intervals in `binom_conf_interval`). A commonly used alternative is the Wald interval. However, the Wald interval can give nonsensical uncertainties when the efficiency is near 0 or 1, and is therefore **not** recommended. As an illustration, the following example shows the same data as above but uses the Wald interval rather than the Wilson interval to calculate ``perr``: >>> bins, binshw, p, perr = binned_binom_proportion(mag, detected, bins=20, ... interval='wald') >>> plt.errorbar(bins, p, xerr=binshw, yerr=perr, ls='none', marker='o', ... label='estimate') .. plot:: import numpy as np from scipy.special import erf from scipy.stats.distributions import binom import matplotlib.pyplot as plt from astropy.stats import binned_binom_proportion def true_efficiency(x): return 0.5 - 0.5 * erf((x - 25.) / 2.) np.random.seed(400) mag = 20. + 10. * np.random.rand(100) np.random.seed(600) detected = binom.rvs(1, true_efficiency(mag)) bins, binshw, p, perr = binned_binom_proportion(mag, detected, bins=20, interval='wald') plt.errorbar(bins, p, xerr=binshw, yerr=perr, ls='none', marker='o', label='estimate') X = np.linspace(20., 30., 1000) plt.plot(X, true_efficiency(X), ls='-', color='r', label='true efficiency') plt.ylim(0., 1.) plt.title('The Wald interval can give nonsensical uncertainties') plt.xlabel('Magnitude') plt.ylabel('Detection efficiency') plt.legend() plt.show() """ x = np.ravel(x) success = np.ravel(success).astype(np.bool) if x.shape != success.shape: raise ValueError('sizes of x and success must match') # Put values into a histogram (`n`). Put "successful" values # into a second histogram (`k`) with identical binning. n, bin_edges = np.histogram(x, bins=bins, range=range) k, bin_edges = np.histogram(x[success], bins=bin_edges) bin_ctr = (bin_edges[:-1] + bin_edges[1:]) / 2. bin_halfwidth = bin_ctr - bin_edges[:-1] # Remove bins with zero entries. valid = n > 0 bin_ctr = bin_ctr[valid] bin_halfwidth = bin_halfwidth[valid] n = n[valid] k = k[valid] p = k / n bounds = binom_conf_interval(k, n, conf=conf, interval=interval) perr = np.abs(bounds - p) return bin_ctr, bin_halfwidth, p, perr
[docs]def median_absolute_deviation(a, axis=None): """Compute the median absolute deviation. Returns the median absolute deviation (MAD) of the array elements. The MAD is defined as ``median(abs(a - median(a)))``. Parameters ---------- a : array-like Input array or object that can be converted to an array. axis : int, optional Axis along which the medians are computed. The default (axis=None) is to compute the median along a flattened version of the array. Returns ------- median_absolute_deviation : ndarray A new array holding the result. If the input contains integers, or floats of smaller precision than 64, then the output data-type is float64. Otherwise, the output data-type is the same as that of the input. Examples -------- This will generate random variates from a Gaussian distribution and return the median absolute deviation for that distribution:: >>> from astropy.stats import median_absolute_deviation >>> from numpy.random import randn >>> randvar = randn(10000) >>> mad = median_absolute_deviation(randvar) See Also -------- numpy.median """ a = np.array(a, copy=False) a_median = np.median(a, axis=axis) # re-broadcast the output median array to subtract it if axis is not None: a_median = np.expand_dims(a_median, axis=axis) # calculated the median average deviation return np.median(np.abs(a - a_median), axis=axis)
[docs]def biweight_location(a, c=6.0, M=None): """Compute the biweight location for an array. Returns the biweight location for the array elements. The biweight is a robust statistic for determining the central location of a distribution. The biweight location is given by the following equation .. math:: C_{bl}= M+\\frac{\Sigma_{\|u_i\|<1} (x_i-M)(1-u_i^2)^2} {\Sigma_{\|u_i\|<1} (1-u_i^2)^2} where M is the sample mean or if run iterative the initial guess, and u_i is given by .. math:: u_{i} = \\frac{(x_i-M)}{cMAD} where MAD is the median absolute deviation. For more details, see Beers, Flynn, and Gebhardt, 1990, AJ, 100, 32B Parameters ---------- a : array-like Input array or object that can be converted to an array. c : float Tuning constant for the biweight estimator. Default value is 6.0. M : float, optional Initial guess for the biweight location. Returns ------- biweight_location : float Returns the biweight location for the array elements. Examples -------- This will generate random variates from a Gaussian distribution and return the biweight location of the distribution:: >>> from astropy.stats.funcs import biweight_location >>> from numpy.random import randn >>> randvar = randn(10000) >>> cbl = biweight_location(randvar) See Also -------- median_absolute_deviation, biweight_midvariance """ a = np.array(a, copy=False) if M is None: M = np.median(a) # set up the difference d = a - M # set up the weighting u = d / c / median_absolute_deviation(a) # now remove the outlier points mask = np.abs(u) < 1 u = (1 - u ** 2) ** 2 return M + (d[mask] * u[mask]).sum() / u[mask].sum()
[docs]def biweight_midvariance(a, c=9.0, M=None): """Compute the biweight midvariance for an array. Returns the biweight midvariance for the array elements. The biweight midvariance is a robust statistic for determining the midvariance (i.e. the standard deviation) of a distribution. The biweight location is given by the following equation .. math:: C_{bl}= (n')^{1/2} \\frac{[\Sigma_{|u_i|<1} (x_i-M)^2(1-u_i^2)^4]^{0.5}} {|\Sigma_{|u_i|<1} (1-u_i^2)(1-5u_i^2)|} where :math:`u_i` is given by .. math:: u_{i} = \\frac{(x_i-M)}{cMAD} where MAD is the median absolute deviation. :math:`n'` is the number of data for which :math:`|u_i| < 1` holds, while the summations are over all i up to n: .. math:: n' = \Sigma_{|u_i|<1}^n 1 This is slightly different than given in the reference below, but results in a value closer to the true midvariance. The midvariance parameter c is typically 9.0. For more details, see Beers, Flynn, and Gebhardt, 1990, AJ, 100, 32B Parameters ---------- a : array-like Input array or object that can be converted to an array. c : float Tuning constant for the biweight estimator. Default value is 9.0. M : float, optional Initial guess for the biweight location. Returns ------- biweight_midvariance : float Returns the biweight midvariance for the array elements. Examples -------- This will generate random variates from a Gaussian distribution and return the biweight midvariance of the distribution:: >>> from astropy.stats.funcs import biweight_midvariance >>> from numpy.random import randn >>> randvar = randn(10000) >>> scl = biweight_midvariance(randvar) See Also -------- median_absolute_deviation, biweight_location """ a = np.array(a, copy=False) if M is None: M = np.median(a) # set up the difference d = a - M # set up the weighting u = d / c / median_absolute_deviation(a) # now remove the outlier points mask = np.abs(u) < 1 u = u ** 2 n = mask.sum() return n ** 0.5 * (d[mask] * d[mask] * (1 - u[mask]) ** 4).sum() ** 0.5\ / np.abs(((1 - u[mask]) * (1 - 5 * u[mask])).sum())
[docs]def signal_to_noise_oir_ccd(t, source_eps, sky_eps, dark_eps, rd, npix, gain=1.0): """Computes the signal to noise ratio for source being observed in the optical/IR using a CCD. Parameters ---------- t : float or numpy.ndarray CCD integration time in seconds source_eps : float Number of electrons (photons) or DN per second in the aperture from the source. Note that this should already have been scaled by the filter transmission and the quantum efficiency of the CCD. If the input is in DN, then be sure to set the gain to the proper value for the CCD. If the input is in electrons per second, then keep the gain as its default of 1.0. sky_eps : float Number of electrons (photons) or DN per second per pixel from the sky background. Should already be scaled by filter transmission and QE. This must be in the same units as source_eps for the calculation to make sense. dark_eps : float Number of thermal electrons per second per pixel. If this is given in DN or ADU, then multiply by the gain to get the value in electrons. rd : float Read noise of the CCD in electrons. If this is given in DN or ADU, then multiply by the gain to get the value in electrons. npix : float Size of the aperture in pixels gain : float Gain of the CCD. In units of electrons per DN. Returns ---------- SNR : float or numpy.ndarray Signal to noise ratio calculated from the inputs """ signal = t * source_eps * gain noise = np.sqrt(t * (source_eps * gain + npix * (sky_eps * gain + dark_eps)) + npix * rd ** 2) return signal / noise
[docs]def bootstrap(data, bootnum=100, samples=None, bootfunc=None): """Performs bootstrap resampling on numpy arrays. Bootstrap resampling is used to understand confidence intervals of sample estimates. This function returns versions of the dataset resampled with replacement ("case bootstrapping"). These can all be run through a function or statistic to produce a distribution of values which can then be used to find the confidence intervals. Parameters ---------- data : numpy.ndarray N-D array. The bootstrap resampling will be performed on the first index, so the first index should access the relevant information to be bootstrapped. bootnum : int Number of bootstrap resamples samples : int Number of samples in each resample. The default `None` sets samples to the number of datapoints bootfunc : function Function to reduce the resampled data. Each bootstrap resample will be put through this function and the results returned. If `None`, the bootstrapped data will be returned Returns ------- boot : numpy.ndarray Bootstrapped data. Each row is a bootstrap resample of the data. """ if samples is None: samples = data.shape[0] # make sure the input is sane assert samples > 0, "samples cannot be less than one" assert bootnum > 0, "bootnum cannot be less than one" if bootfunc is None: resultdims = (bootnum,) + (samples,) + data.shape[1:] boot = np.empty(resultdims) else: resultdims = (bootnum,) boot = np.empty(resultdims) for i in xrange(bootnum): bootarr = np.random.randint(low=0, high=data.shape[0], size=samples) if bootfunc is None: boot[i] = data[bootarr] else: boot[i] = bootfunc(data[bootarr]) return boot
[docs]def mad_std(data): """ Calculate a robust standard deviation using the `median absolute deviation (MAD) <http://en.wikipedia.org/wiki/Median_absolute_deviation>`_. The standard deviation estimator is given by: .. math:: \\sigma \\approx \\frac{\\textrm{MAD}}{\Phi^{-1}(3/4)} \\approx 1.4826 \ \\textrm{MAD} where :math:`\Phi^{-1}(P)` is the normal inverse cumulative distribution function evaluated at probability :math:`P = 3/4`. Parameters ---------- data : array-like Data array or object that can be converted to an array. Returns ------- result : float The robust standard deviation of the data. Examples -------- >>> from astropy.stats import mad_std >>> from astropy.utils import NumpyRNGContext >>> from numpy.random import normal >>> with NumpyRNGContext(12345): ... data = normal(5, 2, size=(100, 100)) ... mad_std(data) # doctest: +FLOAT_CMP 2.02327646594 """ # NOTE: 1. / scipy.stats.norm.ppf(0.75) = 1.482602218505602 return median_absolute_deviation(data) * 1.482602218505602

Page Contents